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NUMERICAL PREDICTIONS OF FLOWS OVER 
BACKWARD-FACING STEPS 

L. P. HACKMAN,* G. D. -BY AND A. B. STRONG 
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SUMMARY 

Predictions are reported for two-dimensional, steady, incompressible flows over reanvard-facing steps 
for both laminar and turbulent conditions. The standard k--E turbulence model was used for the 
turbulent flow. Attention was focused on obtaining accurate solutions to the differential equations. It is 
concluded that some of the serious discrepancies that have occurred between prediction and observa- 
tion, and atmiuted in earlier studies to the inadequacy of the turbulence model, may have been due 
to the inaccuracy of the solution. 

KEY WORDS Finite-Volume Method Numerical Diffusion Upstream Weighted Differencing Skew Upstream 
Differencing Turbulent Recirculating Flow Turbulence Model 

INTRODUCTION 

Many of the fluid flows of practical interest are turbulent and have one or more recirculation 
zones. To improve the performance of aerofoils or rotating machinery designs, modifications 
are made to reduce or eliminate recirculation zones. In other cases, such as flow in a 
combustor, recirculation is a prerequisite for successful operation. Numerical models that are 
capable of accurately simulating such flows are desirable as one means of economically 
improving designs. 

Such numerical models consist of a mathematical model and a solution algorithm. The 
‘mathematical model’ is defined here as the set of differential equations, algebraic relations 
and boundary conditions, which include the mass and mean momentum equations, the 
turbulence model for the estimation of mean turbulence exchange, etc., whose solution is 
sought. These equations, particularly the turbulence model, embody approximations so that 
the accuracy of the mathematical model needs to be verified by a comparison with 
measurements for the types of problems of interest. The solution algorithm, typically a finite 
volume or finite element method, does not yield an exact solution to the mathematical 
model. The final predictions therefore contain errors from two independent sources. To draw 
a definitive conclusion about the mathematical model itself, the solution to the equations and 
the experimental data should both be sufficiently accurate that serious differences between 
prediction and observation can be confidently attributed to the failure of the mathematical 
model. The authors are not aware of any studies involving turbulent recirculating flows 
where these conditions were unequivocally satisfied. The current trend of attributing poor 
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predictions for such flows to the inadequacy of the turbulence model is therefore, at best, 
premature and, at worst, incorrect. It was the goal of the present study to obtain sufficiently 
accurate solutions to one complex flow problem that the performance of the standard k--E 
turbulence model' could be evaluated confidently. 

The criteria for choosing the problem were that the flow must be steady, two-dimensional, 
recirculating and turbulent, and that accurate data must be available. The 'two-dimensional' 
flow over a backward-facing step, with the data by Kim,2 appeared to satisfy these criteria 
most closely. The present paper therefore reports predictions for this flow. 

An extensive review of the literature which relates to the prediction of complex turbulent 
flows has been reported by H a ~ k m a n , ~  and only a few of the particularly relevant studies are 
mentioned here. The fact that numerical errors can severely distort the predictions from 
turbulence models was pointed out by Militzer et al.," with more detailed studies by 
Leschziner and Rodi.' The inadequacy of upstream differencing schemes for flows over a 
step and a fence were clearly pointed out by Castro.6 McGuirk et al? proposed a method of 
identifying regions within the flow where numerical diffusion errors are important, and 
Castro et aL8 pointed out the deficiencies of upwind differencing for laminar flow normal to a 
flat plate. Other recent predictions of flow over fences and steps have been carried out by 
Kim,2 Kwon and Pletcher' and Durst and Rastogi." Launder'' compared the predictions of 
flow over a backward-facing step with the data of Kim, and concluded that the k--E 
turbulence model has serious deficiencies for this flow; the possible contamination of the 
predictions by numerical error was not fully addressed. 

The literature review reveals that there are often substantial discrepancies between 
predictions and measurement for turbulent recirculating flows, but it is not usually clear 
whether these stem from a poor turbulence model, an inaccurate solution, or inaccurate 
experimental data. This paper will attempt to obtain sufficiently accurate solutions to the 
backward-facing step problem that the performance of the k--E turbulence model can be 
evaluated with an added degree of confidence. 

FORMULATION AND SOLUTION METHOD 

Geometry 

The flow configuration of interest in this study is depicted in Figure 1. Fluid enters from 
the left through a parallel plate channel of depth If, flows over a step of height h, and leaves 

PARAMETERS FOR AVERAGE INFLOW 

VELOCITY IS U KIM'S PROBLEM 

H 8 0.0762 m 
h = 0.0381 m 

LI = 0.1524 m 

P = 1.88553 kg/m' 

p = 1.83698 x lo'' kg/m s 
D = 17.8 m h  

- + L p  2.3388m 

I I 
i 

Figure 1. Definition sketch for flow over a backward-facing step. The geometry and fluid properties for Kim's 
turbulent flow problem 2 are defined at the right-hand side of the figure 
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at the right through a channel of depth h + H .  The average inflow velocity is u. For 
sufficiently high Reynolds numbers the flow is known to detach at the corner and reattach on 
the lower wall at some distance X ,  downstream. The motion is assumed to be steady, 
two-dimensional and incompressible. 

The mathematical model 

The equations embodying the mathematical model can be written in any of several 
co-ordinate systems. The exact solution to the equation set must be independent of the 
co-ordinate system used, but the errors that arise in the numerical solution will be different 
for different systems. In the present study the problem was solved using two different 
co-ordinate systems; a comparison of these results provides one indicator of the solution 
accuracy. Both co-ordinate systems were orthogonal and isometric (i.e. the metrics in both 
co-ordinate directions were equal). 

The details of the derivation of the conservation equations and the k--E turbulence model 
in general orthogonal curvilinear co-ordinates may be found in the  thesis of H a ~ k m a n . ~  The 
equations are summarized in Table I, wherein x and y are the general orthogonal co- 
ordinates and h is the local metric. The time mean velocities in the x- and y-directions are Uand 
V, respectively, k and E are the turbulent kinetic energy and its dissipation,’ and P* is the  
local effective pressure in the mean-flow momentum equations. Fluid properties have been 
taken as uniform. With some manipulation, this equation set can be shown to be identical to 
that used by Pope.” The constants in the k--E model are those proposed by Launder and 
Spalding.’ 

The numerical model 

Grid. The equations in Table I were solved over the region downstream of the step using a 
Cartesian system, as shown in Figure 2(a), and the boundary-fitted isometric orthogonal 
curvilinear system illustrated in Figure 2(b). The latter was derived using a Schwarz- 
Christoffel tran~formation.‘~ A series of numerical experiments established that the pre- 
dicted flow field was particularly sensitive to the grid spacing near the step in the main flow 
direction, and to the cross-flow spacing in the shear layer just downstream from the lip of the 
step. Selective grid refinement was used to pack the grid in these regions. Numerical 
experiments also revealed that the predicted flow in the recirculation zone was independent 
of the location of the downstream boundary, provided that it was placed at least 3h beyond 
the reattachment point. The reported calculations were all made with downstream bound- 
aries located at least 7h  beyond reattachment. 

Finite-uolume equations. A finite volume methodI4 was used to formulate the algebraic- 
equation approximations to the differential equations. This involved first integrating the 
differential equations over control volumes defined by the grid. A staggered grid was usedI4 
whereby the control volumes for U and V were centred on the faces of the control volume 
for continuity, k and E ;  pressure nodes were located at the centre of the continuity control 
volume. The integral equations were reduced to algebraic equations using two different sets 
of approximations. The schemes that resulted are denoted as UWDS and SHUDS. 

In the first of these, the Upstream Weighted Differencing Scheme (UWDS) of Raithby and 
Torrance” was used. This is derived by approximating the fluxes by convection and diffusion 
across control-volume faces using a one-dimensional solution to the differential equations 
between the grid points on either side of the face. The exponentials that arise are 
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Table I.  Governing equations written in two dimensional isometric orthogonal curvilinear co-ordinates 
~~ ~ 

The general equation is of the form 

"1 [ h a y  
a - ( d ) + v ( i )  pu4-r-- +v(2) pv4-r-- =S, 
at [ h a x  

where 

where 

1 0  0 

1 ah 
H( l )=- - -  

hh ax 
1 ah 

H(2) = - - 

[h l a U  ax 1 
hh ay 

T ( l l ) = 2  --+ vH(2) 

= T(21) 

a, = 1.0 

L 
P* = P+- p k  

3 
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Figure 2. Typical grid distribution near the step for the Cartesian mesh (a), and curvilinear mesh (b). The complete 
mesh extended to 20 step heights downstream of the step face for all predictions reported in this paper 

approximated in this scheme by simple algebraic functions. This scheme is very similar to the 
hybrid schemes of Patankar and Spa1ding;l6 all such schemes are known to suffer from the 
effects of 'false diffusion'. 

More accurate solutions for a given grid can be obtained by improving the approximation 
of the convection fluxes crossing control volume faces. In the present study, a Skew Hybrid 
Upstream Differencing Scheme (SHUDS) was employed. The scheme was formulated such 
that for grid Peclet numbers at a control volume face in the range PeA 51, a full central 
difference is used; for PeAr2 the skew upwind differencing scheme of Raithby17 is used, 
while for 1 5 PeA I 2 the two schemes are weighted with a linear function of PeA. SHUDS 
was applied only to the solution of the momentum equations, whereas UWDS was used in all 
cases for the turbulent transport equations. As SHUDS leads to  negative coefficients, there is 
a danger that, had it been used for the k and E equations, negative values of these variables 
could have arisen during the solution. Even small negative values of k and E have a 
catastrophic impact on the solution, and therefore must be avoided. It can be argued that 
UWDS can be legitimately used to solve for k and E in those regions of the flow where the 
source terms in their equations are dominant and therefore the treatment of advection is 
unimportant. For other regions, the importance of the error in the present solution for these 
variables is unknown, and this factor requires attention in future studies. 

Boundary conditions. The velocity boundary conditions at the solid walls in Figure 1 were 
zero velocity normal to the wall, and either zero tangential velocity for laminar flow or a 
specified shear stress based on wall functions' for turbulent flow. Fully developed conditions 
were used at the downstream boundary. At the inlet, the U-velocity profile was prescribed, 
and the cross-flow velocity, V, was set to zero. The boundary conditions on k and E at the 
solid boundaries were treated in the standard' manner, and dkldx = d ~ l d x  = 0 was used at the 
outlet. Further details relating to the inlet specification of velocities k and E are described in 
later sections. 

Solution. The equation sets arising from both the differencing schemes were solved in a 
similar manner. From best available estimates of the dependent variables, the coefficients in 
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the algebraic equations were calculated and the solution computed for the resulting linear 
set. The coefficients were then updated, a new solution found, and the process repeated until 
the following convergence criterion was satisfied: 

where the numerator represents the maximum change in pressure between solutions for 
consecutive sets of coefficients, and the denominator is the range in pressure throughout the 
solution domain. This criterion represents convergence close to the round-off limit on an 
IBM 4341 computer. When the criterion was met, the velocities obtained from the solution 
of the momentum equations satisfied mass conservation to the extent that the sum of the 
absolute values of the mass residuals, divided by the inlet mass flow rate, was generally less 
than 0.0002. 

For a given set of coefficients, the equation sets were solved using the distorted transient 
method of Raithby and Schneider." The SUMMIT (Sequential Update of Mass and 
Momentum for ImpliciT solution) method3 maintained the strong implicit coupling between 
the mass and momentum equations necessary for rapid convergence. 

Details related to the numerical model may be found in Hackman's t h e ~ i s . ~  

RESULTS 

Laminar flow 

Numerical errors become pronounced when the artificial viscosity introduced by the 
differencing scheme overwhelms the correct effective viscosity of the flow. For this reason, 
high Reynolds number laminar flows are often more formidable to predict than turbulent 
flows; attention is therefore first directed to the prediction of laminar flow over a backward 
facing step. The inlet velocity profile was specified as parabolic along the broken line in 
Figure 1. The downstream boundary was located 20 step heights downstream of the step. 

The predictions were made for h/(h + H )  = 1/3 in Figure 1, and for Reynolds numbers, 
based on h and the average in-flow velocity U, of 73, 125, 191, and 229. These correspond to 
the experimental conditions of Denham and Pratrick." Predictions were made using the UWDS 
and SHUDS schemes with both the Cartesian and curvilinear grids, at various levels of grid 
refinement (i.e. 4 separate predictions at each grid refinement level). The most sensitive 
feature of the flow appeared to be the reattachment length. This is plotted in Figure 3 for 
Re = 73. For coarse grids, the 4 different prediction methods gave markedly different 
reattachment lengths, but for the finest grid (42 X 42) all predictions agreed to within 0.18 
step heights. This is roughly the uncertainty in the interpolation necessary to locate the 
reattachment point; all the velocity profiles were virtually identical for the 42x42 grids. 
Figure 3 suggests that the Cartesian grid leads to smaller numerical errors, likely because the 
flow near separation remains more closely aligned with this grid which, in turn, leads to  a 
lower numerical viscosity. The Cartesian-SHUDS scheme gave virtually identical results for 
all the grids used. 

For the same geometry and inlet profile shape (parabolic), the velocity was increased to 
give a Reyhnolds number of 229. The change in the reattachment lengths for the 4 
prediction methods with increasingly finer grids is shown in Figure 4. The Cartesian-SHUDS 
and curvilinear-SHUDS predictions agree for the fine grids to within 0.4 step heights, which 
is again roughly the uncertainty in the interpolation required to locate the reattachment 
point. The UWDS results in significantly different reattachment lengths, which approach the 
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0 500 I000 1500 
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Figure 3. Predicted reattachment lengths for Re = 73 as a function of grid refinement. The grids shown include only 
control volumes within the computation domain 

4 0 x  48 

0 CARTESIAN-SHUDS 
V CURVILINEAR-SHUDS 
0 CARTESIAN-UWDS 
A CURVILINEAR-UWDS 

Re -229 = p c h / u  
PARABOLIC INLET 
PROFILE 

I I I I 
1000 2000 

NUMBER OF INTERNAL 
CONTROL VOLUMES 

Figure 4. Predicted reattachment lengths for Re = 229 as a function of grid refinement. The grids shown include 
only control volumes within the computation domain 
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Figure 5. Comparison of the present predicted reattachment lengths with those of Patrick for a parabolic inlet 
profile (open symbols); solid symbols denote measurements, and predictions using the measured inlet profile 

'correct' values from below. To obtain the same level of agreement as found for the lower 
Reynolds number (Figure 3), it is estimated that a grid of roughly 150x 150 would be 
required if the UWDS were used. Calculations on such a grid were not economically feasible. 

Figure 5 compares the predicted reattachment lengths for a parabolic inlet profile with 
those of Atkens et c ~ l . ; ~ '  the maximum discrepancy in the predicted values of X,/h is about 
1.25. A prediction was also carried out using the 42 X 42 Cartesian mesh with the SHUDS 
scheme at Re = 229, but with the measured21 inlet velocity profile in place of the parabolic 
profile. The predicted reattachment length, shown in Figure 5 ,  was within 1 per cent of the 
observed value. The measured2' and prescribed inlet velocities, and the predicted and 
measured velocities at various downstream stations, are shown in Figure 6 .  The agreement is 
entirely satisfactory. 

The laminar flow study has underlined the problem of achieving accurate results using 
upstream weighted schemes. The SHUDS-scheme yields satisfactory results on a relatively 
coarse mesh. 

Turbulent flow 

As already mentioned, the backward facing step problem was chosen because of the 
availability of the accurate data of Kim.2 The dimensions and fluid properties corresponding 
to Kim's experiment are tabulated in Figure 1, His data set included a comprehensive 
documentation of the inlet flow, as well as measurements of mean velocity, turbulent 
intensity and Reynolds stresses throughout the step region. The wall pressure was also 
determined. 

Boundary conditions. The computation domain for this problem extended from the inflow 
boundary denoted by the dashed line in Figure 1, to 20 step heights downstream. The 
boundary conditions on the solid walls and downstream boundary were described earlier. 
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Figure 6.  Comparison of the velocity measurements of Denham and Patrick19 for Re = 229 with predictions. They 
used the measured velocity profile at the inlet boundary 

The specification of the inlet profiles along the broken line in Figure 1 is particularly 
important and requires some explanation. Velocity profiles as well as some turbulence data 
were supplied by Kim at a distance L1=4h  (see Figure 1) upstream of the step, and 
velocities were reported at the step. To prescribe the turbulence conditions at the step, the 
inlet channel between the measurement stations was treated as a section of a parallel plate 
duct with plate spacing H. The velocities measured at the station at distance L1 upstream of 
the step, a turbulent kinetic energy estimated from the measured free stream turbulence 
intensity and a turbulent length scale equal to the channel width H, were all prescribed at the 
inlet. The flow in the parallel plate duct was then solved using a 50x50 grid, and the 
velocities, k and E at a distance L, from the inlet of the duct (corresponding to the location 
of the broken line in Figure 1) were interpolated and used as the inlet condition for the step 
problem. A comparison of the predicted and measured velocities at the step indicated a 
maximum discrepancy between prediction and observation of 1 per cent. 

Reattachment lengths. With these boundary conditions, predictions were again obtained 
for both Cartesian and curvilinear grids, for both the differencing schemes (UWDS and 
SHUDS), and for various levels of grid refinement. The reattachment length results are 
shown in Figure 7. The measured reattachment length of 7-Oh has an uncertainty of *0.5h, 
whereas the error from interpolation of the numerical results is about *0.2h. As in the 
laminar problem, reattachment lengths predicted by Cartesian-SHUDS and curvilinear- 
SHUDS were largest and least sensitive to grid refinement (to within the interpolation 
uncertainty), and the error bounds of these predictions and measurements overlap. Again, 
the UWDS results are less satisfactory. 

Several investigators reported predictions for this problem at the Stanford Turbulent Flow 
Conference.22 The predicted reattachment lengths obtained with the same k--E model fell in 
the range 5.2<XR/h<6.9. The large difference between some of these values and the 
present predictions is apparently the result of solution error. 

Velocity profiles. A comparison of velocity profiles indicated that results for the 36 x 36 
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Figure 7.  The effect of grid refinement on the predicted reattachment length for the 4 numerical schemes for 
turbulent flow. The measured value and the experimental ~ncertainty'~ are also shown 

and 48 x 48 Cartesian-SHUDS prediction were indistinguishable. A very slight difference 
between these and the curvilinear-SHUDS predictions was attributed to the special treat- 
ment required in the application of boundary conditions for Cartesian-SHUDS at the 
singularities (lip and root of the step). The UWDS predictions showed a significant change 
with each grid refinement. The velocity profile comparisons therefore also suggested that the 
SHUDS results were, for practical purposes, grid independent. 

In Figure 8, the 42 X 42 Cartesian-SHUDS predictions (indistinguishable from the 42 x 42 

U / i  
Figure 8. A comparison of predicted and measured velocities for the turbulent step flow problem of Kim2 (see 

Figure 1) 



FLOWS OVER BACKWARD-FACING STEPS 721 

Figure 9. A comparison of predicted and ‘measured’ turbulent kinetic energy for Kim’s’ step flow problem (see 
Figure 1). Since the turbulence intensity in the Z direction was not measured, k was estimated by taking this to be 

the same as the measured intensity in the X direction 

curvilinear-SHUDS predictions) are compared with Kim’s measurements. Keeping in mind 
the relatively large experimental uncertainty within the recirculation zone, the predictions 
adequately reproduce the observations. The 42 X 42 curvilinear-UWDS predictions are also 
plotted in Figure 8. The upstream weighted scheme is seen to predict smaller velocity 
gradients, a result of the smearing caused by numerical diffusion. 

Turbulent kinetic energy. The 42 x 42 Cartesian-SHUDS predictions of the kinetic energy 
at a few stations downstream of the step are plotted in Figure 9. These have been 
non-dimensionalized by u. Since Kim reported only the u’ and U’ components of k, a kinetic 
energy was estimated by setting w’ = u’;  the resulting ‘data’ are plotted with the predictions 
in Figure 9. The predicted maximum values of k lie consistently higher than the data and the 
peak lies nearer the wall. Because of the method of estimating k, and because of experimen- 
tal uncertainty of the measurements in the recirculation zone, it is not certain how much of 
the discrepancy results from the deficiency of the model. Certainly beyond the reattachment 
point the agreement near the peak is much improved. 

The k--E model does, however, appear to be deficient in the kinetic energy levels predicted 
near the edge of the potential core above the shear layer. The model maintains a sharp break 
in the kinetic energy distribution whereas the data suggest that k is significantly diffused into, 
or generated within, this region. 

The 42 x 42 curvilinear-SHUDS predictions are also shown on the Figure. Although the 
velocities obtained using the two grids were virtually identical, the levels of k can be seen to 
be somewhat different for a 42 X 42 grid. 

Turbulent stress. The predicted and measured turbulent stress is plotted in Figure 10. The 
model greatly overpredicts this quantity. Because the strain rates within the shear layer are 
roughly correct, this reflects the overprediction of either the turbulent kinetic energy or 
the turbulent length scale, or both. 
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Figure 10. A comparison of the predicted and measured Reynolds stress for Kim's' step flow problem (see 
Figure 1) 

Pressure recovery. Figure 11 shows the predicted pressure coefficient along the lower wall 
of the step, starting at the root, along with Kim's data. The overall pressure rise is well 
predicted, and the observed dip in the pressure before the recovery starts is reproduced. The 
predicted dip is initiated, however, too close to the step and the curve is displaced about one 
step height upstream of the data. The predictions of Kwon and Pletcher' are also reproduced 
on the graph. Their predictions agree with the data to roughly the same accuracy as the present 
predictions, but no dip was predicted and their overall pressure recovery was slightly below 
that observed. 

Wall function application. Standard wall functions' were applied on the solid boundaries 
in the predictions already described. The wall generation of turbulent kinetic energy is not 

X /h 
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Figure 11. A comparison of the predicted and measured pressure recovery downstream of the step 
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well approximated by this treatment. To improve this estimate, the generation adjacent to 
boundaries was calculated from a three-equation approximation to the universal velocity 
profile, and the flow was recalculated using the 42 x 42 curvilinear-SHUDS method. This 
change caused the reattachment to increase from about 6.5 (see Figure 7) to 7.0, which is in 
better agreement with observation. However, only very minor changes resulted in other 
variables. The conclusion is that, for this problem, the accurate generation in the shear layer 
is much more important for the correct prediction of the recirculation zone than is the 
estimate of generation near the walls. 

CONCLUSIONS 

The present predictions of turbulent flow over a backward facing step are in significantly 
better agreement with measurement than are some previous predictions for the same problem 
using the same turbulence model. This change apparently results from the reduction of the 
error in solving the differential equations. It follows that to assess the adequacy of a 
turbulence model properly, extreme care is required to avoid confounding the error in the 
mathematical model with the solution error. The present study suggests that it is not feasible 
to use upstream differencing to obtain accurate solutions for recirculating turbulent flows. 
The skew hybrid upstream differencing scheme yielded virtually grid independent results 
with relatively coarse meshes. 
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